题目内容
9.(1)用配方法把它变成y=a(x-h)2+k的形式,
(2)在给定的平面直角坐标系中,画出这个函数的图象;
| x | … | -5 | -4 | -2 | 0 | 1 | … |
| y | … | 5 | 0 | -4 | 0 | 5 | … |
分析 (1)直接利用配方法写成顶点式的形式即可;
(2)利用顶点坐标以及对称轴以及图象与坐标轴交点画出图象即可;
(3)根据向右平移横坐标加,向下平移纵坐标减求出平移后的二次函数图象的顶点坐标,然后利用顶点式形式写出即可.
解答 解:(1)y=x2+4x=(x+2)2-4;
(2)列表如下:
| x | … | -5 | -4 | -2 | 0 | 1 | … |
| y | … | 5 | 0 | -4 | 0 | 5 | … |
故答案为-5,-4,-2,0,1,5,0,-4,0,5;
(3)∵将此图象沿x轴向右平移3个单位,再沿y轴向下平移1个单位,
∴平移后的二次函数图象的顶点坐标为(-2+3,-4-1),即(1,-5),
∴平移后图象所对应的函数关系式为:y=(x-1)2-5,即y=x2-2x-4.
故答案为y=x2-2x-4.
点评 本题考查了二次函数的三种形式,二次函数的图象,二次函数的性质,以及二次函数图象与几何变换,作二次函数图象一般先求出与x轴的交点坐标和顶点坐标.
练习册系列答案
相关题目
20.已知A、B两个动点同时在数轴上匀速运动,且保持运动的方向不变.若A、B两点的起始位置分别用有理数a、b表示,c是最大的负整数,且|a-19c2|+|b-8c3|=0
(1)求a、b、c的值
(2)根据题意及表格中的已知数据,填写完表格:
(3)若A、B两点同时到达点M的位置,且点M用有理数m表示,求m的值
(4)A、B两点能否相距18个单位长度?如果能,求出此时运动了多少秒及此时A、B两点表示的有理数;如果不能,请说明理由.
(1)求a、b、c的值
(2)根据题意及表格中的已知数据,填写完表格:
| 运动时间(秒) | 0 | 5 | 7 | t |
| A点位置 | a | -1 | ||
| B点位置 | b | 17 | 27 |
(4)A、B两点能否相距18个单位长度?如果能,求出此时运动了多少秒及此时A、B两点表示的有理数;如果不能,请说明理由.
17.
绥棱县第六中学和第一中学联合举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写表;
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好?
(1)根据图示填写表;
| 平均数(分) | 中位数(分) | 众数(分) | |
| 初中部 | 85 | 85 | 85 |
| 高中部 | 85 | 85 | 100 |
14.下面计算正确的是( )
| A. | 3a-2a=1 | B. | 3a2+2a=5a3 | C. | 3a+3b=6ab | D. | 2x+3x=5x |
18.上学期小红的银行活期储蓄存折上的存取情况如表(记存入为正,单位:元):
表中遗漏了3月份的存取金额.
(1)小红3月份存入或取出多少元?
(2)小红存折上哪月份的金额最高?
| 月份 | 2月 | 3月 | 4月 | 5月 | 6月 | 累计 |
| 存款(元) | 100 | 50 | -30 | -20 | 60 |
(1)小红3月份存入或取出多少元?
(2)小红存折上哪月份的金额最高?