题目内容
11.分解因式:(1)(x+2y)2-y2
(2)x2(x-y)+(y-x)
分析 (1)直接利用平方差公式分解因式得出即可;
(2)首先提取公因式(x-y),进而利用平方差公式分解因式得出即可.
解答 解:(1)(x+2y)2-y2
=(x+2y+y)(x+2y-y)
=(x+3y)(x-y);
(2)x2(x-y)+(y-x)
=(x-y)(x2-1)
=(x-y)(x+1)(x-1).
点评 此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.
练习册系列答案
相关题目
16.下列各式中正确的是( )
| A. | -(-2)>-1 | B. | |-0.2|=-0.2 | C. | |-5|<0 | D. | -$\frac{3}{2}$>-$\frac{1}{2}$ |
20.先阅读下列一段文字,然后解答问题:
某运输部门规定:办理托运,当一种物品的重量不超过16千克时,需付基础费30元和保险费a元:为限制过重物品的托运,当一件物品超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x千克.
(1)当x≤16时,支付费用为a+30元(用含a的代数式表示);当x≥16时,支付费用为a+30+(x-16)b元(用含x和a、b的代数式表示);
(2)甲、乙两人各托运一件物晶,物品重量和支付费用如下表所示
①试根据以上提供的信息确定a,b的值.
②试问在物品可拆分的情况下,用不超过105元的费用能否托运50千克物品?若能,请设计出其中一种托运方案,并求出托运费用;若不能,请说明理由.
某运输部门规定:办理托运,当一种物品的重量不超过16千克时,需付基础费30元和保险费a元:为限制过重物品的托运,当一件物品超过16千克时,除了付以上基础费和保险费外,超过部分每千克还需付b元超重费.设某件物品的重量为x千克.
(1)当x≤16时,支付费用为a+30元(用含a的代数式表示);当x≥16时,支付费用为a+30+(x-16)b元(用含x和a、b的代数式表示);
(2)甲、乙两人各托运一件物晶,物品重量和支付费用如下表所示
| 物品重量(千克) | 支付费用(元) |
| 18 | 38 |
| 25 | 53 |
②试问在物品可拆分的情况下,用不超过105元的费用能否托运50千克物品?若能,请设计出其中一种托运方案,并求出托运费用;若不能,请说明理由.