题目内容

2.证明:
(1)有一个角是直角的菱形是正方形;
(2)对角线垂直的矩形是正方形.

分析 (1)由菱形的性质和已知条件得出AB=CD=BC=DA,四边形ABCD是矩形,得出∠A=∠B=∠C=∠D=90°,即可得出结论;
(2)由矩形的性质和已知条件得出∠BAD=∠ABC=∠BCD=∠CDA=90°,四边形ABCD是菱形,得出AB=BC=CD=DA,即可得出结论.

解答 (1)如图1所示:
已知:四边形ABCD是菱形,∠A=90°;
求证:四边形ABCD是正方形;
证明:∵四边形ABCD是菱形,∠A=90°,
∴AB=CD=BC=DA,四边形ABCD是矩形,
∴∠A=∠B=∠C=∠D=90°,
∴四边形ABCD是正方形;
(2)如图2所示:
已知:四边形ABCD是矩形,对角线AC⊥BD;
求证:四边形ABCD是正方形;
证明:∵四边形ABCD是矩形,对角线AC⊥BD,
∴∠BAD=∠ABC=∠BCD=∠CDA=90°,四边形ABCD是菱形,
∴AB=BC=CD=DA,
∴四边形ABCD是正方形.

点评 本题考查了菱形的性质与判定、矩形的性质与判定、正方形的判定方法;熟练掌握矩形和菱形的判定与性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网