题目内容

已知正比例函数y=ax与反比例函数的图象有一个公共点A(1,2).

(1)求这两个函数的表达式;

(2)画出草图,根据图象写出正比例函数值大于反比例函数值时x的取值范围.

分析:(1)分别把A点坐标代入正比例函数解析式和反比例函数解析式,求出a与b的值,从而确定两函数解析式;

(2)先画出y=和y=2x的图象,根据对称性得到两函数的另一个交点B与点A关于原点对称,则B点坐标为(﹣1,﹣2),然后观察图象得到当﹣1<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即正比例函数值大于反比例函数值.

解:(1)把A(1,2)代入y=ax得a=2,

所以正比例函数解析式为y=2x;

把A(1,2)代入y=得b=1×2=2,

所以反比例函数解析式为y=

(2)如图,当﹣1<x<0或x>1时,正比例函数值大于反比例函数值.

点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网