题目内容

如图△ABC中有正方形EDFC,由图(1)通过三角形的旋转变换可以得到图(2).观察图形的变换方式,若AD=3,DB=4,则图(1)中△ADE和△BDF面积之和S为
 
.正方形EDFC的面积为
 
考点:旋转的性质
专题:
分析:由图形可知△DA′F是由△DAE旋转得到,利用旋转的性质可得到△A′DB为直角三角形,可求得S,在Rt△A′DB中 由勾股定理可求得A′B,再利用面积相等可求得DF,可求得正方形EDFC的面积.
解答:解:由旋转的性质得AD=A′D=3,∠ADE=∠A′DF,
∵∠A′DB=∠A′DF+∠FDB=∠ADE+∠FDB=90°,
∴在Rt△A′DB中,
S△A′DB=
1
2
A′D×BD=
1
2
×3×4=6,
∴S△ADE+S△BDF=S△A′DF+S△BDF=S△A′DB=6,
又A′D=3,BD=4,可求得A′B=5,
1
2
A′B•DF=
1
2
×5×DF=6,
∴DF=
12
5

∴S正方形EDFC=DF2=
144
25

故答案为:6;
144
25
点评:本题主要考查旋转的性质,利用旋转得到△A′DB为直角三角形是解题的关键,注意勾股定理及等积法的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网