题目内容
已知圆锥的底面圆的半径为3m,其侧面展开图是半圆,则圆锥的母线长为_____ m.
某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.
(1)当日产量为多少时,每日获得的利润为1750元?
(2)当日产量为多少时,可获得最大利润?最大利润是多少?
两个相似多边形的最长边分别是10和30,其中一多边形的最短边为6,则另一多边形的最短边为_________
如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD,BC的延长线相交于点E.
(1)求证:AD是半圆O的切线;
(2)连结CD,求证:∠A=2∠CDE;
(3)若∠CDE=30°,OB=2,求的长.
如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).求直线与双曲线的解析式;
如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为( )
A. cm B. 3cm C. 3cm D. 6cm
已知二次函数y=﹣x2+bx+c+1,
①当b=1时,求这个二次函数的对称轴的方程;
②若c=b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?
③若二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<x2,与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足,求二次函数的表达式.
如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为( )
A.一定不是平行四边形 B.一定不是中心对称图形
C.可能是轴对称图形 D.当AC=BD时它是矩形
如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.
(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;
(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?
(参考数据:sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有结果精确到个位)