题目内容

已知:正比例函数y=k1x的图象与反比例函数(x>0)的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式.

【答案】分析:此题只要求出M点的坐标,就解决问题了,根据M点在正比例函数y=k1x的图象与反比例函数的图象上,把M点坐标用a表示出来,又根据△OMN的面积等于2,求出a值,从而求出M点坐标.
解答:解:∵MN⊥x轴,点M(a,1),
∴S△OMN==2,
∴a=4,
∴M(4,1),
∵正比例函数y=k1x的图象与反比例函数(x>0)的图象交于点M(4,1),

解得
∴正比例函数的解析式是,反比例函数的解析式是
点评:此题考查正比例函数和反比例函数的性质,用待定系数法求函数解析式,还考查了面积公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网