题目内容

5.先化简,再求值:($\frac{x+2}{{x}^{2}-2x}$-$\frac{x-1}{{x}^{2}-4x+4}$)÷$\frac{{x}^{2}-16}{{x}^{2}+4x}$,并选一个你喜欢的x的值代入求值.

分析 先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.

解答 解:原式=[$\frac{x+2}{x(x-2)}$-$\frac{x-1}{(x-2)^{2}}$]•$\frac{x(x+4)}{(x+4)(x-4)}$
=$\frac{{x}^{2}-4-{x}^{2}+x}{x{(x-2)}^{2}}$•$\frac{x}{x-4}$
=$\frac{x-4}{x{(x-2)}^{2}}$•$\frac{x}{x-4}$
=$\frac{1}{{(x-2)}^{2}}$,
当x=1时,原式=$\frac{1}{{(1-2)}^{2}}$=1.

点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网