题目内容
【题目】如图,在平行四边形ABCD中,对角线AC,BD相交于点O,动点E以每秒1个单位长度的速度从点A出发沿AC方向运动,点F同时以每秒1个单位长度的速度从点C出发沿CA方向运动,若AC=12,BD=8,则经过________秒后,四边形BEDF是矩形.
![]()
【答案】2或8
【解析】
设经过t秒后,四边形BPDE是矩形;由平行四边形的性质得出OA=OC=
AC=6,OB=OD=
BD=4,得出OE=OF,证出四边形BFDE是平行四边形,当EF=BD,即OE=OD时,四边形BFDE是矩形,得出6-t=4,或t-6=2,解方程即可.
解:设经过t秒后,四边形BPDQ是矩形;
则AE=CF=t,
∵四边形ABCD是平行四边形,
∴OA=OC=
AC=6,OB=OD=
BD=4,
∴OE=OF,
∴四边形BFDE是平行四边形,
当EF=BD,即OE=OD时,四边形BFDE是矩形,
此时6-t=4,或t-6=2,
解得:t=2,或t=8,
即经过2秒或8秒后,四边形BPDE是矩形.
故答案为: 2或8.
练习册系列答案
相关题目