题目内容
如图,⊙A、⊙B的半径分别为4、2,且AB=12.若作⊙C使得圆心在一直线AB上,且⊙C与⊙A外切,⊙C与⊙B相交于两点,则⊙C的半径可以是
A.3 B.4 C.5 D.6
B
二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过 点(﹣1,0),对称轴为直线x=2,下列结论: ①4a+b=0;②9a+c>3b;③8a+7b+2c>0; ④当x>﹣1时,y的值随x值的增大而增大. 其中正确的结论有 (填序号)
下列各式:① ② ③ ④
⑤其中计算正确的有( )个。
A.1 B.2 C. 3 D. 4
如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为
A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2014的坐标为 .
如图已知:直线交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.
(1)求抛物线的解析式;
(2)若点D的坐标为(-1,0),在直线上有一点P,使ΔABO与ΔADP相似,求出点P的坐标;
(3)在(2)的条件下,在x轴下方的抛物线上,是否存在点E,使ΔADE的面积等于四边形APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.
如图,将边长为2cm的正方形ABCD绕点A顺时针旋转到AB’C’D’的位置,旋转角为30°,则C点运动到C′点的路径长为 cm.
解不等式组:
一次函数的图象不可能的是( )
A. B. C. D.
对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.
(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;
(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;
(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?