题目内容
考点:方向角,三角形内角和定理
专题:
分析:根据平行线的性质,可得内错角相等,根据角的和差,可得∠ABC、∠BAC,根据三角形的内角和公式,可得答案.
解答:
解:因为BD∥AE,
所以∠DBA=∠BAE=57°.
所以∠ABC=∠DBC-∠DBA=82°-57°=25°.
在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,
所以∠C=180°-∠ABC-∠BAC=180°-25°-72°=83°.
所以∠DBA=∠BAE=57°.
所以∠ABC=∠DBC-∠DBA=82°-57°=25°.
在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,
所以∠C=180°-∠ABC-∠BAC=180°-25°-72°=83°.
点评:本题考查了方向角,方向角是相互的,先求出∠ABC、∠BAC,再求出答案.
练习册系列答案
相关题目