题目内容

如图,小李晚上由路灯A下的B处走到C时,测得影子CD的长为2米,继续往前走3米到达E处时,测得影子EF的长为2米,已知小李的身高CM为1.5米,求路灯A的高度AB.
考点:相似三角形的应用,中心投影
专题:
分析:根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的光线三者构成的两个直角三角形相似解答.
解答:解:∵小李的身高:小李的影长=路灯的高度:路灯的影长,
当小李在CG处时,Rt△DCG∽Rt△DBA,即CD:BD=CG:AB,
当小李在EH处时,Rt△FEH∽Rt△FBA,即EF:BF=EH:AB=CG:AB,
∴CD:BD=EF:BF,
∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,
设AB=x,BC=y,
1
y+1
=
2
y+5

解得:y=3,经检验y=3是原方程的根.
∵CD:BD=CG:AB,即
1.5
x
=
1
4
=,
解得x=6米.
即路灯A的高度AB=6米.
点评:本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组相似三角形中有一组公共边,利用其作为相等关系求出所需要的线段,再求公共边的长度.
练习册系列答案
相关题目
某企业去年开始生成一种新产品,每件成本50元,由于新产品市场占有率较低,上市初期销量逐渐减少,1至6月,月销售量y1(件)与月份x(月)满足一次函数关系:随着新产品逐渐得到市场认可,销量增加,6至12月,月销售量y2(件)与月份x(月)满足二次函数关系,且6月份的月销售量是该二次函数的最小值,它们的图象如图所示.已知1至6月每件该产品的售价z(元)与月份x之间满足函数关系:z=60+
5
2
x
(1≤x≤6,x为整数):除生成成本外,平均每销售一件产品还需额外支出的杂费p(元)与月份x之间满足函数关系:p=
1
2
x
(1≤x≤6,x为整数),从7月至12月每件产品的售价和额外支出的杂费均稳定在6月的水平.

(1)根据题中图象,求出y1与y2与x之间的函数关系式;
(2)求出在去年1至12月,企业销量该零件在哪个月获得的利润W(元)最大?并求出这个最大值;
(3)今年初以来,由于物价上涨及积压了去年未销售的产品等因素,该企业每月均需支出杂费6000元(不论每月销售量如何,且天数不满一月时,按整月计算).为出来去年积压的4000件库存产品,该企业计划采取新的营销策略,据销售部门调研,物价部门规定其销售单价不得高于每件75元,当按最高单价75元销售时,这批库存产品月均销售350件,当单价每降低1元,月均销售将增加50元.现有两种销售方案,一是直接按最高单价销售,另一种是采用上述降价促销,以获得月均利润最高的方式去销售,若将这批库存产品全部售出,请比较月均获利最多和销售最高这两种销售方案,哪一种总获利较多,多多少元?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网