题目内容
如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,求阴影部分的面积.
我们把大于1的正整数m的三次幂按一定的规则“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,……若m3按此规则“分裂”后,最后一个奇数是341,则m的值为( )
A. 17 B. 18 C. 19 D. 20
为了倡导低碳交通,方便市民出行,某市推出了公共自行车系统.收费以小时为单位,每次使用不超过1小时的免费,超过1小时后,不足1小时的部分按1小时收费.小聪同学通过调查得知,自行车使用时间为3小时,收费2元;使用时间为4小时,收费3元.她发现当使用时间超过1小时后用车费用与使用时间之间存在一次函数的关系.
(1)设使用自行车的费用为y元,使用时间为x小时(x为大于1的整数),求y与x的函数解析式;
(2)若小聪此次使用公共自行车6小时,则她应付多少元费用?
(3)若小聪此次使用公共自行车付费7元,请说明她所使用的时间的范围.
下列事件为必然事件的是 ( )
A. 打开电视,正在播放东台新闻 B. 下雨后天空出现彩虹
C. 抛掷一枚质地均匀的硬币,落地后正面朝上 D. 早晨太阳从东方升起
科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.
(1)请写出图中曲线对应的函数解析式;
(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?
如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M的坐标为______.
若关于x的一元二次方程有实数根,则k的取值范围是( )
A. k≥1 B. k>1 C. k<1 D. k≤1
证明命题“两个锐角的和是锐角”是假命题,举的反例是___________________________.
为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面与通道平行),通道水平宽度为8米, ,通道斜面 的长为6米,通道斜面的坡度.
(1)求通道斜面的长为 米;
(2)为增加市民行走的舒适度,拟将设计图中的通道斜面的坡度变缓,修改后的通道斜面的坡角为30°,求此时的长.(结果保留根号)