题目内容

如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是


  1. A.
    AC=BD
  2. B.
    ∠OBC=∠OCB
  3. C.
    S△AOB=S△DOC
  4. D.
    ∠BCD=∠BDC
D
分析:由四边形ABCD是等腰梯形,AD∥BC,根据等腰梯形的对角线相等,即可证得AC=BD,又由△ABC≌△DCB与△AOB≌△DOC,证得B与C正确,利用排除法即可求得答案.
解答:∵四边形ABCD是等腰梯形,AD∥BC,
∴AB=CD,AC=BD,故A正确;
∵∠ABC=∠DCB,BC=CB,
∴△ABC≌△DCB(SAS),
∴∠OBC=∠OCB,故B正确;
∴∠ABO=∠DCO,
∵∠AOB=∠DOC,
∴△AOB≌△DOC(AAS),
∴S△AOB=S△DOC,故C正确.
利用排除法,即可得D错误.
故选D.
点评:此题考查了等腰梯形的性质与全等三角形的判定与性质.解此题的关键是注意数形结合思想的应用与排除法的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网