题目内容
如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2017的横坐标为( )
![]()
A. 1010 B. 2 C. 1 D. ﹣1006
A 【解析】∵A3是第一与第二个等腰直角三角形的公共点, A5是第二与第三个等腰直角三角形的公共点, A7是第三与第四个等腰直角三角形的公共点, A9是第四与第五个等腰直角三角形的公共点, ∵2017=1008×2+1, ∴A2017是第1008个与第1009个等腰直角三角形的公共点, ∴A2017在x轴正半轴, ∵OA5=4,OA9=6,OA13=...
练习册系列答案
相关题目
某校决定在4月7日开展“世界无烟日”宣传活动,活动有A社区板报、B集会演讲、C喇叭广播、D发宣传画四种宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了两种不完整的统计图表:
选项 | 方式 | 百分比 |
A | 社区板报 | 35% |
B | 集会演讲 | m |
C | 喇叭广播 | 25% |
D | 发宣传画 | 10% |
请结合统计图表,回答下列问题:
(1)本次抽查的学生共 人,m= ,并将条形统计图补充完整;
(2)若该校学生有1500人,请你估计该校喜欢“集会演讲”这项宣传方式的学生约有多少人?
(3)学校采用抽签方式让每班在A、B、C、D四种宣传方式在随机抽取两种进行展示,请用树状图或列表法求某班所抽到的两种方式恰好是“集会演讲”和“喇叭广播”的概率.
![]()
在学校开展的“爱我中华”的一次演讲比赛中,编号1,2,3,4,5,6的五位同学最后成绩如表所示.那么这五位同学演讲成绩的众数与中位数依次是( )
参赛者编号 | 1 | 2 | 3 | 4 | 5 | 6 |
成绩/分 | 95 | 88 | 90 | 93 | 88 | 92 |
A. 92,88 B. 88,90 C. 88,92 D. 88,91
D 【解析】由表可知,这6为同学的成绩分别为:88、88、90、92、93、95, 则众数为88,中位数为(90+92) ÷2=91, 故选:D.