题目内容
若点A(2,4)在函数y=kx的图象上,则下列各点在此函数图象上的是( )
A. (1,2) B. (-2,-1)
C. (-1,2) D. (2,-4)
某同学在求多边形的内角和时,多算了一个内角的度数,求得内角和为1 560°,问这个内角是多少度?这个多边形的边数是多少?
下列分式中,最简分式是( )
A. B. C. D.
某剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;
方案2:按总价的90%付款.
某校有4名老师与若干名(不少于4人)学生听音乐会.
(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数解析式;
(2)请计算并确定出最节省费用的购票方案.
如图,直线y=ax+b与直线y=cx+d相交于点(2,1),则关于x的一元一次方程ax+b=cx+d的解为__________.
已知,如图,点M在x轴上,以点M为圆心,2.5长为半径的圆交y轴于A、B两点,交x轴于C(x1,0)、D(x2,0)两点,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的两根.
(1)求点C、D及点M的坐标;
(2)若直线y=kx+b切⊙M于点A,交x轴于P,求PA的长;
(3)⊙M上是否存在这样的点Q,使点Q、A、C三点构成的三角形与△AOC相似?若存在,请求出点的坐标,并求出过A、C、Q三点的抛物线的解析式;若不存在,请说明理由.
如图,依次以三角形、四边形、…、n边形的各顶点为圆心画半径为l的圆,且圆与圆之间两两不相交.把三角形与各圆重叠部分面积之和记为S3,四边形与各圆重叠部分面积之和记为S4,….n边形与各圆重叠部分面积之和记为Sn.则S90的值为_____.(结果保留π)
如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是________.
如图是某路灯在铅垂面内的示意图,灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=6.求灯杆AB的长度.