题目内容
如图,已知在△ABC中,AC=BC,将△ABC绕点C顺时针旋转到△DEC,其中点A运动到点D,点B运动到点E,记旋转角为α,∠B=β,如果AD∥BC,那么α与β的数量关系为______.

∵在△ABC中,AC=BC,∠B=β,
∴∠4=∠B=β.
∵AD∥BC,
∴∠1=∠2.
又∵∠2+∠4+∠B=180°,
∴∠1=∠2=180°-2β.
根据旋转的性质知,∠ACD=α,AC=DC,
∴∠1=∠3,
∴∠ACD=180°-2∠1=4β-180°=α,
∴4β-α=180°.
故答案为:4β-α=180°.

∴∠4=∠B=β.
∵AD∥BC,
∴∠1=∠2.
又∵∠2+∠4+∠B=180°,
∴∠1=∠2=180°-2β.
根据旋转的性质知,∠ACD=α,AC=DC,
∴∠1=∠3,
∴∠ACD=180°-2∠1=4β-180°=α,
∴4β-α=180°.
故答案为:4β-α=180°.
练习册系列答案
相关题目