题目内容

【题目】在菱形中,,点边上的中点,点上的一动点(不与点重合),延长交射线于点,连结

求证:四边形是平行四边形;

填空:________时,四边形是矩形;________时,四边形是菱形.

【答案】(1)详见解析;(2)①;②

【解析】

(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;

(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;

②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.

(1)∵四边形ABCD是菱形,

NDAM,

∴∠NDE=MAE,DNE=AME,

又∵点EAD边的中点,

DE=AE,

∴△NDE≌△MAE,

ND=MA,

∴四边形AMDN是平行四边形;

(2)①当AM的值为1时,四边形AMDN是矩形.理由如下:

∵四边形ABCD是菱形,

AB=AD=2.

AM=AD=1,

∴∠ADM=30°

∵∠DAM=60°,

∴∠AMD=90°,

∴平行四边形AMDN是矩形;

故答案为:1;

②当AM的值为2时,四边形AMDN是菱形.理由如下:

AM=2,

AM=AD=2,

∴△AMD是等边三角形,

AM=DM,

∴平行四边形AMDN是菱形,

故答案为:2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网