题目内容
【题目】如图,在Rt△ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.
(1)当t为何值时,P、Q两点的距离为5
cm?
(2)当t为何值时,△PCQ的面积为15cm2?
(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?
![]()
【答案】(1)t=1;(2)经过2或1.5s后,S△PCQ的面积为15cm2;(3)当点P运动1.75秒时,四边形BPQA的面积最小为:
cm2.
【解析】(1)根据勾股定理PC2+CQ2=PQ2,便可求出经过1s后,P、Q两点的距离为
cm2;
(2)根据三角形的面积公式
便可求出经过2或1.5s后,S△PCQ的面积为15 cm2;
(3)根据三角形的面积公式
以及二次函数最值便可求出t=1.75s时△PCQ的面积最大,进而求出四边形BPQA的面积最小值.
解:(1)∵在Rt△ABC中,AC=24cm,BC=7cm,
∴AB=25cm,
设经过ts后,P、Q两点的距离为5
cm,
ts后,PC=7-2t cm,CQ=5t cm,
根据勾股定理可知PC2+CQ2=PQ2,
代入数据(7-2t)2+(5t)2=(5
)2;
解得t=1或t=-
(不合题意舍去);
(2)设经过ts后,S△PCQ的面积为15cm2
ts后,PC=7-2t cm,CQ=5t cm,
S△PCQ=
=
×(7-2t)×5t=15
解得t1=2,t2=1.5,
经过2或1.5s后,S△PCQ的面积为15cm2
(3)设经过ts后,△PCQ的面积最大,则此时四边形BPQA的面积最小,
ts后,PC=7-2t cm,CQ=5t cm,
S△PCQ=
×PC×CQ=
×(7-2t)×5t=
×(-2t2+7t)
当t=-
时,即t=
=1.75s时,△PCQ的面积最大,
即S△PCQ=
×PC×CQ=
×(7-2×1.75)×5×1.752=
(cm2),
∴四边形BPQA的面积最小值为:S△ABC-S△PCQ最大=
×7×24-
=
(cm2),
当点P运动1.75秒时,四边形BPQA的面积最小为:
cm2.
【题目】将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.
根据题意,将下面的表格补充完整:
白纸张数 | 1 | 2 | 3 | 4 | 5 |
|
纸条长度 | 20 | ______ | 54 | 71 | ______ |
|
直接写出用x表示y的关系式:______ ;
要使粘合后的总长度为1006cm,需用多少张这样的白纸?