题目内容
下列性质中,正方形具有而菱形不一定具有的性质是
A. 四条边相等 B. 对角线互相平分
C. 对角线相等 D. 对角线互相垂直
如图,在平面直角坐标系xOy中,直线y=x与反比例函数y=k/x在第一象限内的图象相交于点A(m,3).
(1)求该反比例函数的关系式;
(2)将直线y=x沿y轴向上平移8个单位后与反比例函数在第一象限内的图象相交于点B,连接AB,这时恰好AB⊥OA,求tan∠AOB的值;
(3)在(2)的条件下,在射线OA上存在一点P,使△PAB∽△BAO,求点P的坐标.
如图,E、B、F、C四点在一条直线上,EB=CF ,∠A =∠D,添以下哪一个条件仍不能证明△ABC ≌△DEF的是( )
A. ∠DEF=∠ABC B. DF∥AC C. AB∥DE D. AB =DE
若: : =1:2:3,则=______________.
化简且、均不为0),甲的解法:
;乙的解法:
.下列判断中,正确的是( )
A. 甲的解法正确,乙的解法不正确 B. 甲的解法不正确,乙的解法正确
C. 甲、乙的解法都正确 D. 甲、乙的解法都不正确
(8分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.
如图,A(-4,),B(-1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.
(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?
(2)求一次函数解析式及m的值.
(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.
已知反比例函数y=的图象过点A(3,1).
(1)求反比例函数的解析式;
(2)若一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.
如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______