题目内容
如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
(2)若PA=2,cosB=
,求⊙O半径的长.
![]()
(1)证明:连接OD,
∵PD切⊙O于点D,
∴OD⊥PD,
∵BE⊥PC,
∴OD∥BE,
∴ADO=∠E,
∵OA=OD,
∴∠OAD=∠ADO,
∴∠OAD=∠E,
∴AB=BE;
(2)解:有(1)知,OD∥BE,
∴∠POD=∠B,
∴cos∠POD=cosB=
,
在Rt△POD中,cos∠POD=
=
,
∵OD=OA,PO=PA+OA=2+OA,
∴
,
∴OA=3,
∴⊙O半径=3.
![]()
练习册系列答案
相关题目
随着人民生活水平不断提高,我市 “初中生带手机”现象也越来越多,为了了解家
长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.
问:(1)这次调查的学生家长总人数为 .
(2)请补全条形统计图,并求出持“很赞同”态
度的学生家长占被调查总人数的百分比.
(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.