题目内容
圣诞节时,一个小组有x人,他们每两人之间互送贺卡一张,已知全组共送贺卡132张,则可列方程为 .
“6”字形图中,FM是大⊙O的直径,BC与大⊙O相切于B,
OB与小⊙O相交于点A,AD∥BC,CD∥BH∥FM,DH⊥BH于H,
设∠FOB=α,OB=4,BC=6.
(1)求证:AD为小⊙O的切线;
(2)在图中找出一个可用α表示的角,并说明你这样表示的理由;(根据所写结果的正确性及所需推理过程的难易程度得分略有差异)
(3)当α=30º时,求DH的长。(结果保留根号)
三角形两边长分别是8和6,第三边长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是__________
直角坐标系内,点P(-2 ,3)关于原点的对称点Q的坐标为 ( )
A.(2,-3) B.(2,3) C.(3,-2) D.(-2,-3)
如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,∠AOB′的度数是( )
A.25° B. 30° C. 35° D. 40°
已知y关于x的反比例函数y= (m为常数)经过点A(2,-1),求反比例函数的解析式.
已知,如图,抛物线与轴交于点C,与轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
已知,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m。
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长。
如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是( )
A.点M在AB上
B.点M在BC的中点处
C.点M在BC上,且距点B较近,距点C较远
D.点M在BC上,且距点C较近,距点B较远