题目内容
4.分析 作CH⊥AB于H,交AD于G,根据等腰直角三角形的性质得到∠ACH=∠BCH=45°,即∠ACG=45°,∠B=45°,由CE⊥AD,根据等角的余角相等得到∠1=∠2,则可根据“ASA”判断△AGC≌△CFB,得到CG=BF,然后根据“SAS”证明△CGD≌△BFD,则可得到∠CDA=∠FDB
解答 解:作CH⊥AB于H,交AD于G,连接BE,如图,![]()
∵△ABC为等腰直角三角形,
∴∠ACH=∠BCH=45°,即∠ACG=45°,∠B=45°
∵CE⊥AD,
∴∠1+∠ACE=∠2+∠ACE=90°,
∴∠1=∠2,
在△AGC和△CFB中,
$\left\{\begin{array}{l}{∠1=∠2}\\{AC=CB}\\{∠ACG=∠CBF}\end{array}\right.$,
∴△AGC≌△CFB(ASA),
∴CG=BF,
∵AD为腰CB上的中线,
∴CD=BD,
在△CGD和△BFD中,
$\left\{\begin{array}{l}{CG=BF}\\{∠GCD=∠B}\\{CD=BD}\end{array}\right.$,
∴△CGD≌△BFD(SAS),
∴∠CDA=∠FDB.
点评 本题考查了全等三角形的判定与性质、等腰直角三角形的性质;本题有一定难度,需要通过作辅助线两次证明三角形全等才能得出结论.
练习册系列答案
相关题目