题目内容
如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数为
A. 4个 B. 5个 C. 6个 D. 7个
先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中 a=-1,b=-2.
如图,直线y=x与双曲线y= (k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y= (k>0,x>0)交于点B,若OA=3BC,则k的值为( )
A. 3 B. 6 C. D.
先化简,然后从的范围内取一个合适的整数作为a的值代入求值.
如图,边长为1的正方形ABCD绕点A逆时针旋转后得到正方形,边与CD交于点O,则图中阴影部分的面积是
A. B. C. D.
一块矩形耕地的尺寸如图,在这块耕地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽度相等,而且要保证余下的可耕地面积为9600 m2,那么水渠应挖多宽?
某种文化衫,平均每天销售40件,每件盈利20元,若每件降价1元,则每天可多售10件,如果每天要盈利1080元,每件应降价___________元.
我们定义:如图1,在中,把AB绕点A顺时针旋转得到,把AC绕点A逆时针旋转得到,连接当时,我们称是的“旋补三角形”, 边上的中线AD叫做的“旋补中线”,点A叫做“旋补中心”.
特例感知:
在图2,图3中,是的“旋补三角形”,AD是的“旋补中线”.
如图2,当为等边三角形时,AD与BC的数量关系为______BC;
如图3,当,时,则AD长为______.
猜想论证:
在图1中,当为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
如图4,在四边形ABCD,,,,,在四边形内部是否存在点P,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由.
如图,点C是线段AB的中点,AB=6cm,如果点D是线段AB上一点,且BD =1cm,那么CD =_________cm.