题目内容
先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中 a=-1,b=-2.
如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫做格点。(1)以格点为顶点画,使三这长分别为4,,13;
(2)若的三边长分别为m、n、d,满足,求三边长,若能画出以格点为顶点的三角形,请画出该格点三角形。
矩形具有而菱形不具有的性质是【 】
A.两组对边分别平行 B.对角线相等
C.对角线互相平分 D.两组对角分别相等
如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为
A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
观察下列等式:
3﹣=3×;
(﹣)﹣6=(﹣)×6;
(﹣0.5)﹣(﹣1)=(﹣0.5)×(﹣1)
根据上面这些等式反映的规律,解答下列问题:
(1)上面等式反映的规律用文字语言可以描述如下:存在两个有理数,使得这两个有理数的差等于
.
(2)若满足上述规律的两个有理数中有一个数是,求另一个有理数;
(3)若这两个有理数用字母a、b表示,则上面等式反映的规律用字母表示为 ;
(4)在(3)中的关系式中,字母a、b是否需要满足一定的条件?若需要,直接写出字母a、b应满足的条件;若不需要,请说明理由.
某地电话拨号入网有两种收费方式,用户可任选其一:A.记时制:3元/时;B.包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加收通讯费1.2元/时.
(1)某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用;
(2)若某用户估计一个月的上网时间为25小时,你认为选择哪种方式较合算?
如图是王明家的楼梯示意图,其水平距离(即AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米,则王明家楼梯的竖直高度(即BC的长度)为________米.
如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.
(1)求双曲线和直线的解析式;
(2)直接写出不等式的解集.
如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数为
A. 4个 B. 5个 C. 6个 D. 7个