ÌâÄ¿ÄÚÈÝ
1£®Ð¡Ã÷¼Ò×¼±¸×°ÐÞ³ø·¿£¬´òËãÆÌÉèÈçͼ1µÄÕý·½ÐεØ×©£¬¸ÃµØ×©¼ÈÊÇÖá¶Ô³ÆÍ¼ÐÎÒ²ÊÇÖÐÐĶԳÆÍ¼ÐΣ¬ÆÌÉèЧ¹ûÈçͼ2Ëùʾ£®¾²âÁ¿Í¼1·¢ÏÖ£¬×©ÃæÉÏËĸöСÕý·½Ðεı߳¤¶¼ÊÇ4cm£¬AB=JN=2cm£¬ÖмäµÄ¶à±ßÐÎCDEFGHIKÊÇÕý°Ë±ßÐΣ®£¨1£©ÇóMAµÄ³¤¶È£»
£¨2£©ÇóÕý°Ë±ßÐÎCDEFGHIKµÄÃæ»ý£»
£¨3£©ÒÑ֪СÃ÷¼Ò³ø·¿µÄµØÃæÊDZ߳¤Îª3.14Ã×µÄÕý·½ÐΣ¬ÓøõØ×©ÆÌÉèÍê±Ïºó£¬×î¶àÐγɶàÉÙ¸öÕý°Ë±ßÐΣ¿£¨µØ×©¼ä·ì϶µÄ¿í¶ÈºöÂÔ²»¼Æ£©
·ÖÎö £¨1£©Á¬½ÓBKºÍNC£¬Á½ÏߵĽ»µãΪO£¬¸ù¾ÝÕý·½ÐεÄÐÔÖʺ͹´¹É¶¨ÀíÇó³öON£¬¼´¿ÉÇó³ö´ð°¸£»
£¨2£©×÷¸¨ÖúÏߵóöÕý·½ÐκÍÖ±½ÇÈý½ÇÐΣ¬·Ö±ðÇó³öÕý·½ÐκÍÖ±½ÇÈý½ÇÐεÄÃæ»ý£¬¼´¿ÉµÃ³ö´ð°¸£»
£¨3£©Çó³öÕý·½ÐεØ×©µÄ±ß³¤£¬Çó³öÆäÃæ»ý£¬ÔÙÇó³öСÃ÷¼Ò³ø·¿µÄµØÃæµÄÃæ»ý£¬¼´¿ÉµÃ³ö´ð°¸£®
½â´ð ½â£º£¨1£©Á¬½ÓBKºÍNC£¬Á½ÏߵĽ»µãΪO£¬
¡ßËıßÐÎBCKNÊÇÕý·½ÐΣ¬
¡à¡ÏNOB=90¡ã£¬OB=ON£¬
¡ßBN=4cm£¬
¡àÓɹ´¹É¶¨ÀíµÃ£ºBO=ON=2$\sqrt{2}$cm£¬
¡ßJN=2cm£¬
¡àAM=JO=£¨2+2$\sqrt{2}$£©cm£»![]()
£¨2£©Èçͼ£¬×÷СÕý·½ÐεĶԽÇÏߣ¬×é³ÉÕý·½ÐÎORZQ£¬
ÔòÕý·½Ðεı߳¤Îª£¨2$\sqrt{2}$+4+2$\sqrt{2}$£©cm£¬¼´Îª£¨4$\sqrt{2}$+4£©cm£¬
ËùÒÔÕý°Ë±ßÐÎCDEFGHIKµÄÃæ»ýΪSÕý·½ÐÎOQZR-4S¡÷BOC=£¨4$\sqrt{2}$+4£©2-4¡Á$\frac{1}{2}$¡Á2$\sqrt{2}$¡Á2$\sqrt{2}$=£¨32+32$\sqrt{2}$£©cm2£»
£¨3£©Õý·½ÐεØ×©µÄ±ß³¤Îª£º2¡Á£¨2+2$\sqrt{2}$£©cm+£¨4$\sqrt{2}$+4£©cm=£¨8+8$\sqrt{2}$£©cm£¬
¡ß3.14Ã×=314cm£¬
¡à3142¡Â£¨8+8$\sqrt{2}$£©2¡Ö263£¨¿é£©£®
´ð£ºÓøõØ×©ÆÌÉèÍê±Ïºó£¬×î¶àÐγÉ263¸öÕý°Ë±ßÐΣ®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏâǶÎÊÌâµÄÓ¦Óã¬Äܹ¹ÔìÌØÊâͼÐÎÊǽâ´ËÌâµÄ¹Ø¼ü£¬±¾ÌâÄѶȽϴó£¬Í¬Ê±»¹¿¼²éÁËÕý·½ÐκÍÕý°Ë±ßÐεÄÐÔÖʼ°¹´¹É¶¨Àí£®
| A£® | $\sqrt{5ab}$ | B£® | $\sqrt{4{a^2}}$ | C£® | $\sqrt{8a}$ | D£® | $\sqrt{\frac{a}{2}}$ |
| A£® | -9¡æ | B£® | -5¡æ | C£® | 5¡æ | D£® | 9¡æ |
| A£® | 10 | B£® | -6 | C£® | -6»ò10 | D£® | -10 |