题目内容
已知直线
(p>0)与x轴、y轴分别交于点A和点B,过B点的抛物线y=ax2+bx+c的顶点为C,如果△ABC恰为等边三角形,则b的值为________.
分析:先根据直线的解析式求出A、B两点的坐标,再求出抛物线的顶点C的坐标,然后根据△ABC恰为等边三角形即可求出b的值.
解答:∵直线y=
∴当y=0时,x=-
∴A(-
∴AB=
∵抛物线y=ax2+bx+c过B点,
∴p=c,
∵△ABC等边三角形,
∴C点坐标为(-
又∵抛物线y=ax2+bx+c的顶点为C(-
∴
解得a=-
故答案为:-
点评:本题考查了抛物线与坐标轴的交点坐标的求法,等边三角形的性质,二次函数的性质,解题时要注意数形结合思想及方程思想的运用,是各地中考的热点和难点,同学们要加强训练,属于中档题.
练习册系列答案
相关题目