题目内容
要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为( )
A. 中位数 B. 方差 C. 平均数 D. 众数
阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小明:那直角三角形是否存在奇异三角形呢?
小红:等边三角形一定是奇异三角形.
(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是 .(填“真命题”或“假命题”)
(2)若是奇异三角形,其中两边的长分别为、,则第三边的长为 .
(3)如图,中,,以为斜边作等腰直角三角形,点是上方的一点,且满足.求证:是奇异三角形.
如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?( )
A. 115 B. 120 C. 125 D. 130
已知a,b是直角三角形的两边,且满足,求此三角形第三边长.
如图,在矩形ABCD中 ,AB=4,BC=8,点E为CD中点,P、Q为BC边上两个动点,且PQ=2,当四边形APQE周长最小时,BP的长为( )
A. 1 B. 2 C. 2 D. 4
在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
若是关于的一元一次不等式,则________.
)矩形中,.分别以所在直线为轴,轴,建立如图1所示的平面直角坐标系.是边上一个动点(不与重合),过点的反比例函数y=()的图像与边交于点.
(1)当点运动到边的中点时,求点的坐标;
(2)连接EF、AB,求证:EF∥AB;
(3)如图2,将沿折叠,点恰好落在边上的点处,求此时反比例函数的解析式.
如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A. 31° B. 28° C. 62° D. 56°