题目内容

已知AB=5,AD=4,AD∥BM, (如图),点C、E分别为射线BM上的动点(点C、E都不与点B重合),联结AC、AE,使得∠DAE=∠BAC,射线EA交射线CD于点F.设BC=x,

(1)如图1,当x=4时,求AF的长;

(2)当点E在点C的右侧时,求y关于x的函数关系式,并写出函数的定义域;

(3)联结BD交AE于点P,若△ADP是等腰三角形,直接写出x的值.

(1);(2);(3)或或. 【解析】分析:作AH⊥BC于H,如图1,利用余弦的定义和勾股定理计算出BH=3,AH=4,AC=,再判断四边形ABCD为平行四边形得到∠B=∠D,接下来证明△ADF∽△ABC,然后利用相似比计算出AC;(2)如图2,先证明△BAC∽△BEA,利用相似比得到BE=,AC= ,则CE= ,再证明△ADF∽EFC,利用相似比得到AF= ,然后计算AF·AC可得到y与x...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网