题目内容
如图1,在△ABC中,AB
=AC,点D是BC的中点,点E在AD上.
![]()
(1)求证:BE=CE;
(2)若BE的延长线交AC于点F,且BF⊥AC,垂足为F,如图2,∠BAC=45°,求证:△AEF≌△BCF.
(1)证明见解析;(2)证明见解析.
【解析】(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE.在△ABE和△ACE中,∵AB=AC,∠BAE=∠CAE,AE=AE,∴△ABE≌△ACE.∴BE=CE.(运用垂直平分线的性质说明也可)
(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形.∴AF=BF.由(1)知AD⊥BC,∴∠EAF=∠CBF.在△AEF和△BCF中,AF=BF,∠AFE=∠BFC=90°,∠EAF=∠CBF,∴△AEF≌△BCF.
练习册系列答案
相关题目