题目内容
计算:(3﹣π)0﹣(﹣)﹣1+×4sin60°.
当x=_________时,点M(x -3,x -1)在y轴上.
如图,将四边形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接AE.∠C=90°,BF=DF,AE∥BD.证明:四边形ABCD是矩形。
如图,在△中, , 于,则图中相似三角形有( )
A. 1对 B. 2对 C. 3对 D. 4对
(10分)在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)结合图2,通过观察、测量、猜想:=______,并证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若AC=8,BD=6,直接写出的值.
分解因式:a2b﹣4ab=_____.
△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是( )
A. 80° B. 80°或100° C. 100° D. 160°或20°
化简: .
如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.