题目内容
如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.
![]()
【答案】
证明:∵∠1=∠2,∴∠1+ECA=∠2+∠ACE,即∠ACB=∠DCE。
在△ABC和△DEC中,∵CD=CA,∠ACB=∠DCE,BC=EC,
∴△ABC≌△DEC(SAS)。∴DE=AB。
【解析】
试题分析:由已知证得∠ACB=∠DCE,从而根据三角形全等SAS的判定,证明△ABC≌△DEC,继而可得出结论。
练习册系列答案
相关题目