题目内容


如图,AB是⊙O的直径,C是⊙O上的一点,AD垂直于过点C的切线,垂足为D,∠BAD=70°,则∠DAC=  

 


35°

考点: 切线的性质. 

分析: 连接OC.先由OA=OC,可得∠ACO=∠CAO,再由切线的性质得出OC⊥CD,根据垂直于同一直线的两直线平行得到AD∥CO,由平行线的性质得∠DAC=∠ACO,等量代换后可得∠DAC=∠CAO,即AC平分∠BAD,进一步计算得出答案即可.

解答: 解:连接OC.

∵OA=OC,

∴∠ACO=∠CAO.

∵CD切⊙O于C,

∴OC⊥CD,

又∵AD⊥CD,

∴AD∥CO,

∴∠DAC=∠ACO,

∴∠DAC=∠CAO,

即AC平分∠BAD,

∴∠DAC=∠BAD=35°.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网