题目内容


已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.

(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;

(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.

①判断OQ与AC的位置关系,并说明理由;

②求线段PQ的长.


解:(1)如图①,连接OQ.

∵线段PQ所在的直线与⊙O相切,点Q在⊙O上,

∴OQ⊥OP.

又∵BP=OB=OQ=2,

∴PQ===2,即PQ=2

(2)OQ⊥AC.理由如下:

如图②,连接BC.

∵BP=OB,

∴点B是OP的中点,

又∵PC=CQ,

∴点C是PQ的中点,

∴BC是△PQO的中位线,

∴BC∥OQ.

又∵AB是直径,

∴∠ACB=90°,即BC⊥AC,

∴OQ⊥AC.

(3)如图②,PC•PQ=PB•PA,即PQ2=2×6,

解得PQ=2


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网