题目内容
考点:一元二次方程的应用
专题:几何动点问题
分析:作PH⊥CD,垂足为H,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.
解答:
解:设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,
作PH⊥CD,垂足为H,
则PH=BC=6,PQ=10,HQ=CD-AP-CQ=16-5t.
∵PH2+HQ2=PQ2,
可得:(16-5t)2+62=102,
解得t1=4.8,t2=1.6.
答:P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.
作PH⊥CD,垂足为H,
则PH=BC=6,PQ=10,HQ=CD-AP-CQ=16-5t.
∵PH2+HQ2=PQ2,
可得:(16-5t)2+62=102,
解得t1=4.8,t2=1.6.
答:P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.
点评:此题考查了一元二次方程的运用.利用作垂线,构造直角三角形,运用勾股定理列方程是解题关键.
练习册系列答案
相关题目
下列方程中有两个相等的实数根的方程是( )
| A、x2+2x=0 |
| B、x2+2ax+a2=0 |
| C、x2-4x-4=0 |
| D、ax2+2ax+a=0 |
下列说法:
①全等三角形的形状相同、大小相等
②全等三角形的对应边相等、对应角相等
③面积相等的两个三角形全等
④全等三角形的周长相等
其中正确的说法为( )
①全等三角形的形状相同、大小相等
②全等三角形的对应边相等、对应角相等
③面积相等的两个三角形全等
④全等三角形的周长相等
其中正确的说法为( )
| A、①②③④ | B、①②③ |
| C、②③④ | D、①②④ |