题目内容


在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.

 


【考点】等腰三角形的判定与性质;平行线的性质.

【分析】求出∠CAD=∠BAD=∠EDA,推出AE=DE,求出∠ABD=∠EDB,推出BE=DE,求出AE=BE,根据直角三角形斜边上中线性质求出即可.

【解答】解:∵AD平分∠BAC,

∴∠BAD=∠CAD,

∵DE∥AC,

∴∠CAD=∠ADE,

∴∠BAD=∠ADE,

∴AE=DE,

∵AD⊥DB,

∴∠ADB=90°,

∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,

∴∠ABD=∠BDE,

∴DE=BE,

∵AB=5,

∴DE=BE=AE=AB=2.5.

【点评】本题考查了平行线的性质,等腰三角形的性质和判定,直角三角形斜边上中线性质的应用,关键是求出DE=BE=AE.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网