题目内容

8.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.
(1)判断四边形ACC'A'的形状,并说明理由;
(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=$\frac{12}{13}$,求CB'的长.

分析 (1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC'A'是菱形.
(2)通过解直角△ABC得到AC、BC的长度,由(1)中菱形ACC'A'的性质推知AC=AA′,由平移的性质得到四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′-BC.

解答 解:(1)四边形ACC'A'是菱形.理由如下:
由平移的性质得到:AC∥A′C′,且AC=A′C′,
则四边形ACC'A'是平行四边形.
∴∠ACC′=∠AA′C′,
又∵CD平分∠ACB的外角,即CD平分∠ACC′,
∴CD也平分∠AA′C′,
∴四边形ACC'A'是菱形.

(2)∵在△ABC中,∠B=90°,AB=24,cos∠BAC=$\frac{12}{13}$,
∴cos∠BAC=$\frac{AB}{AC}$=$\frac{12}{13}$,即$\frac{24}{AC}$=$\frac{12}{13}$,
∴AC=26.
∴由勾股定理知:BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=$\sqrt{2{6}^{2}-2{4}^{2}}$=10.
又由(1)知,四边形ACC'A'是菱形,
∴AC=AA′=26.
由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,
∴AA′=BB′=26,
∴CB′=BB′-BC=26-10=16.

点评 本题考查了四边形综合题,需要掌握平移的性质,解直角三角形,勾股定理以及菱形的判定与性质等知识点.解答(1)题时,往往误认为四边形ACC'A'是平行四边形,岂不知还要根据已知条件继续证得该四边形是菱形,属于易错题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网