题目内容
17.分析 直接利用平行四边形的判定与性质得出AE=DF,进而得出答案.
解答 解:设t秒时四边形ADFE是平行四边形;
理由:当四边形ADFE是平行四边形,则AE=DF,
即t=9-2t,
解得:t=3,故3秒时四边形ADFE是平行四边形.
故答案为:3.
点评 此题主要考查了平行四边形的判定,得出AE=DF是解题关键.
练习册系列答案
相关题目
5.
不等式组的解集在数轴上表示如图,则该不等式组是( )
| A. | $\left\{\begin{array}{l}x≥-1\\ x≤2\end{array}\right.$ | B. | $\left\{\begin{array}{l}x<-1\\ x≥2\end{array}\right.$ | C. | $\left\{\begin{array}{l}x>-1\\ x<2\end{array}\right.$ | D. | $\left\{\begin{array}{l}x>-1\\ x≤2\end{array}\right.$ |
6.某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x名工人生产螺栓,有y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程组正确的是( )
| A. | $\left\{\begin{array}{l}{x+y=56}\\{2×16x=24y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=56}\\{2×24x=26y}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=56}\\{16x=24y}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=56}\\{24x=16y}\end{array}\right.$ |