题目内容
与1+最接近的整数是( )
A. 4 B. 3 C. 2 D. 1
已知函数,若使y=k成立的x值恰好有三个,则k的值为( )
A.0 B. 1 C.2 D.3
将6-(+3)-(-7)+(-2)写成省略加号的和的形式为( )
A.-6-3+7-2 B.6-3-7-2 C.6-3+7-2 D.6+3-7-2
如果(am+nbmb2n)2=a8b16,则m=________,n=________.
若的小数部分是a, 的小数部分是b,则a+b的值为( )
A. 0 B. 1 C. -1 D. 2
如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点。
(1)求抛物线的解析式。
(2)求△ABC的面积。若P是抛物线上一点(异于点C),且满足△ABP的面积等于△ABC的面积,求满足条件的点P的坐标。
(3)点M是线段BC上的点(不与B,C重合),过M作MN∥轴交抛物线于N,若点M的横坐标为,请用含的代数式表示线段MN的长。
(4)在(3)的条件下,连接NB、NC,则是否存在点M,使△BNC的面积最大?若存在,求的值,并求出△BNC面积的最大值。若不存在,说明理由。
一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为。
(1)布袋里红球有多少个?
(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率。
小军旅行箱的密码是一个六位数,但是他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )
A. B. C. D.
向北行驶3 km,记作+3 km,向南行驶2 km记作( )
A. +2 km B. -2 km C. +3 km D. -3 km