题目内容
【题目】如图,等腰直角△ABC中,∠BAC=90°,AB=AC,∠ADB=45°
![]()
(1)求证:BD⊥CD;
(2)若BD=6,CD=2,求四边形ABCD的面积.
【答案】(1)见解析;(2)16
【解析】
(1)根据等腰直角三角形的判定和全等三角形的判定和性质解答即可;
(2)根据三角形面积公式解答即可.
(1)![]()
过A作AE⊥AD,交DB的延长线于E,
∴∠EAD=90°,
∵∠ADB=45°,
∴∠AED=45°
∴△ADE是等腰直角三角形,
∴AE=AD,
∵∠EAD=∠BAC=90°,
∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
即∠EAB=∠DAC,
在△AEB与△ADC中
,
∴△AEB≌△ADC(SAS),
∴∠E=∠ADC=45°,
∴∠BDC=∠BDA+∠ADC=45°+45°=90°,
∴BD⊥CD.
(2)由(1)可知,四边形ABCD的面积等于△AED的面积,S△AED=
DE2=16.
练习册系列答案
相关题目
【题目】某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
序号 项目 | 1 | 2 | 3 | 4 | 5 | 6 |
笔试成绩/分 | 85 | 92 | 84 | 90 | 84 | 80 |
面试成绩/分 | 90 | 88 | 86 | 90 | 80 | 85 |
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).
(1)这6名选手笔试成绩的中位数是________分,众数是________分;
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.