题目内容
19.分析 求出CE=DF,根据全等三角形的判定定理SSS推出即可.
解答 证明:∵CF=DE,
∴CF+EF=DE+EF,
∴CE=DF,
在△ADF和△BCE中
$\left\{\begin{array}{l}{DF=CE}\\{AF=BE}\\{AD=CB}\end{array}\right.$
∴△ADF≌△BCE(SSS).
点评 本题考查了全等三角形的判定定理的应用,能正确应用全等三角形的判定定理进行推理是解此题的关键,难度适中.
练习册系列答案
相关题目
10.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量(件)与时间(天)的关系如下表:
未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系是y1=$\frac{1}{4}t+25$(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系是y2=-$\frac{1}{2}t+40$(21≤t≤40且t为整数).
(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的只是确定一个满足这些数据之间的函数关系式;
(2)请预测未来40天的哪一天销售利润最大?最大日销售的利润是多少?
(3)在实际销售的前20天中,该公司决定销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.
| 时间(天) | 1 | 3 | 6 | 10 | 36 | … |
| 日销售量(件) | 94 | 90 | 84 | 76 | 24 | … |
(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的只是确定一个满足这些数据之间的函数关系式;
(2)请预测未来40天的哪一天销售利润最大?最大日销售的利润是多少?
(3)在实际销售的前20天中,该公司决定销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.