题目内容

9.某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙(墙长25m)另外三边用木栏围成,木栏长40m.
(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.
(2)养鸡场面积能达到最大吗?如果能,请你用配方法求出;如果不能,请说明理由.

分析 (1)首先设鸡场垂直于墙的一边AB的长为x 米,然后根据题意可得方程x(40-2x)=168,即可求得x的值,又由墙长25m,可得x=14,则问题得解;
(2)设围成养鸡场面积为S,由题意可得S与x的函数关系式,由二次函数最大值的求解方法即可求得答案.

解答 解:(1)设鸡场垂直于墙的一边AB的长为x 米,
则 x(40-2x)=168,
整理得:x2-20x+84=0,
解得:x1=14,x2=6,
∵墙长25m,
∴0≤BC≤25,即0≤40-2x≤25,
解得:7.5≤x≤20,
∴x=14.
答:鸡场垂直于墙的一边AB的长为14米.

(2)围成养鸡场面积为S,
则 S=x(40-2x)
=-2x2+40x
=-2(x2-20x)
=-2(x2-20x+102)+2×102
=-2(x-10)2+200,
∵-2(x-10)2≤0,
∴当x=10时,S有最大值200.
即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值200米2

点评 此题考查了一元二次方程与二次函数的实际应用.解题的关键是理解题意,根据题意列方程与函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网