题目内容
如图,在Rt△AOB中,OA=OB=3
,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为______.

| 2 |
连接OP、OQ.
∵PQ是⊙O的切线,
∴OQ⊥PQ;
根据勾股定理知PQ2=OP2-OQ2,
∴当PO⊥AB时,线段PQ最短,
∵在Rt△AOB中,OA=OB=3
,
∴AB=
OA=6,
∴OP=
=3,
∴PQ=
=
=2
.
故答案为:2
.

∵PQ是⊙O的切线,
∴OQ⊥PQ;
根据勾股定理知PQ2=OP2-OQ2,
∴当PO⊥AB时,线段PQ最短,
∵在Rt△AOB中,OA=OB=3
| 2 |
∴AB=
| 2 |
∴OP=
| OA•OB |
| AB |
∴PQ=
| OP2-OQ2 |
| 32-12 |
| 2 |
故答案为:2
| 2 |
练习册系列答案
相关题目