题目内容
观察下列等式;| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)猜想并写出
| 1 |
| n(n+1) |
(2)计算
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2009×2010 |
(3)计算
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 90 |
(4)计算
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 24 |
| 1 |
| 40 |
| 1 |
| 180 |
分析:(1)由规律得
=
-
;
(2)由(1)的规律,分别将每一个式子写成两个分数差的形式,再计算;
(3)逆用规律,再计算;
(4)根据
+
+
+
+…+
=
(
+
+
+
+…+
)计算即可.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)由(1)的规律,分别将每一个式子写成两个分数差的形式,再计算;
(3)逆用规律,再计算;
(4)根据
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 24 |
| 1 |
| 40 |
| 1 |
| 180 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 90 |
解答:解:(1)
-
(2分)
(2)原式=1-
+
-
+
-
+…+
-
=1-
=
(6分)
(3)原式=
+
+
+…+
=1-
=
(10分)
(4)原式=
×
+
×
+
×
+…+
×
=
(
+
+
+
+…+
)
=
×
=
(14分)
| 1 |
| n |
| 1 |
| n+1 |
(2)原式=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2009 |
| 1 |
| 2010 |
=1-
| 1 |
| 2010 |
=
| 2009 |
| 2010 |
(3)原式=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 9×10 |
=1-
| 1 |
| 10 |
=
| 9 |
| 10 |
(4)原式=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 12 |
| 1 |
| 2 |
| 1 |
| 90 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 90 |
=
| 1 |
| 2 |
| 9 |
| 10 |
=
| 9 |
| 20 |
点评:本题考查了利用规律解题,解决此题的关键是题目给出的规律:
+
+…+
=1-
+
-
+…+
-
=1-
.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
练习册系列答案
相关题目