题目内容
观察下列等式:
+
+
=1-
+
-
+
-
=1-
=
.
(1)直接写出下列各式的计算结果:
+
+
+…+
=
;
(2)探究并计算:
+
+
+…+
.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)直接写出下列各式的计算结果:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2006×2007 |
| 2006 |
| 2007 |
| 2006 |
| 2007 |
(2)探究并计算:
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2006×2008 |
分析:(1)根据已知的等式得到规律
=
-
(n为正整数),将所求式子利用此规律拆项,抵消后通分,利用同分母分数的减法法则计算,即可得到结果;
(2)将所求式子提取
,并将剩下的分母写出相邻两数积的形式,利用上述规律拆项,抵消后计算,即可得到结果.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)将所求式子提取
| 1 |
| 4 |
解答:解:(1)原式=1-
+
-
+
-
+…+
-
=1-
=
;
(2)原式=
(
+
+
+…+
)
=
(1-
+
-
+
-
+…+
-
)
=
(1-
)=
.
故答案为:(1)
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2006 |
| 1 |
| 2007 |
| 1 |
| 2007 |
| 2006 |
| 2007 |
(2)原式=
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 1003×1004 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1003 |
| 1 |
| 1004 |
=
| 1 |
| 4 |
| 1 |
| 1004 |
| 1003 |
| 4016 |
故答案为:(1)
| 2006 |
| 2007 |
点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时利用利用运算律来简化运算.解题的关键是找出规律
=
-
(n为正整数).
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
练习册系列答案
相关题目