题目内容

如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=
 
°.
考点:三角形内角和定理
专题:
分析:求出∠ACB,根据角平分线定义求出∠BCE即可,根据三角形内角和定理求出∠BCD,代入∠FCD=∠BCE-∠BCD,求出∠FCD,根据三角形的内角和定理求出∠CDF即可.
解答:解:∵∠A+∠B+∠ACB=180°,∠A=30°,∠B=70°,
∴∠ACB=80°,
∵CE平分∠ACB,
∴∠BCE=
1
2
∠ACB=
1
2
×80°=40°,
∵CD⊥AB,
∴∠CDB=90°,
∵∠B=70°,
∴∠BCD=90°-70°=20°,
∴∠FCD=∠BCE-∠BCD=20°,
∵DF⊥CE,
∴∠CFD=90°,
∴∠CDF=90°-∠FCD=70°.
故答案为:70.
点评:本题考查了三角形的内角和定理,垂直定义,角平分线定义等知识点,关键是求出各个角的度数,题目比较典型,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网