题目内容
【题目】在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).
![]()
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+
MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.
【答案】(1)y=﹣x2+2x+3;(2)存在,PD最大值为
;(3)
,N(1,
),M(
,0).
【解析】
(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3,即可求解;
(2)设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,即可求解;
(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,即可求解.
(1)y=﹣x2+bx+c经过点C,则c=3,
将点A的坐标代入抛物线表达式:y=﹣x2+bx+3,得:0=-1-b+3,解得:b=2,
抛物线的表达式为:y=﹣x2+2x+3;
(2)存在,理由:
令y=0,得:﹣x2+2x+3=0,解得:x=﹣1或3,故点B(3,0),
设直线BC为y=kx+b,将点B、C的坐标代入得:
,解得:
.
∴直线BC的表达式为:y=﹣x+3,
设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),
则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x=
,
当x
时,PD最大值为:
;
(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求.
![]()
∵∠ABH=30°,∠MHB=90°,∴∠CMO=∠BMH=90°-30°=60°.
∵∠COB=90°,∴∠COM=30°,∴OC=
OM.
∵OC=3,∴OM=
,
∴M(
,0),CM=2OM=
,MF=OM-OF=
,MB=OB-OM=
.
∵∠FMN=60°,∴tan∠FMN=
,∴
,
∴NF=
,∴N(1,
).
CN+MN
MB的最小值=CM
MB=
.