题目内容

4.在等边△ABC中,AB=2cm,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE+DF=$\sqrt{3}$ cm.

分析 作AG⊥BC于G,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=$\sqrt{3}$,根据S△ABD+S△ACD=S△ABC即可得出DE+DF=AG=$\sqrt{3}$cm.

解答 解:作AG⊥BC于G,
∵△ABC是等边三角形,
∴∠B=60°,
∴AG=$\frac{\sqrt{3}}{2}$AB=$\sqrt{3}$cm,
连接AD,
∵S△ABD+S△ACD=S△ABC
∴$\frac{1}{2}$AB•DE+$\frac{1}{2}$AC•DF=$\frac{1}{2}$BC•AG,
∵AB=AC=BC=2,
∴DE+DF=AG=$\sqrt{3}$cm,
故答案为$\sqrt{3}$.

点评 本题考查了等边三角形的性质,解直角三角函数以及三角形面积等,根据S△ABD+S△ACD=S△ABC即可得出DE+DF=AG是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网