题目内容
计算:2sin60°+tan45°= .
如图,二次函数的图象与x轴交与A(4,0),并且OA=OC=4OB,点P为过A、B、C三点的抛物线上一动点.
(1)、求点B、点C的坐标并求此抛物线的解析式;
(2)、是否存在点P,使得△ACP是以点C为直角顶点的直角三角形?若存在,求出点P的坐标;若不存在,说明理由;
(3)、过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
已知关于的分式方程的解是非负数,则的取值范围是___.
如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC,
(1)求证:△ABE∽△BCD;
(2)求tan∠DBC的值;
(3)求线段BF的长.
如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9 ,则tanA= .
如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米.他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米.已知小明的身高是1.5米,那么路灯A的高度AB是( )
(A)4.5米(B)6米(C)7.2米(D)8米
类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G. 若, 求的值.
(1)尝试探究:
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________,
CG和EH的数量关系是________,的值是________.
(2)类比延伸:如图2,在原题条件下,若(m>0)则的值是________(用含有m的代数式表示),试写出解答过程.
(3)拓展迁移:如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若 (a>0,b>0)则的值是________(用含a、b的代数式表示).
将抛物线y=-2x2先向左平移1个单位,再向上平移3个单位,两次平移后得到的抛物线的解析式为( )
A.y=-2(x+1)2+3 B.y=-2(x+1)2-3 C.y=-2(x-1)2+3 D.y=-2(x-1)2-3
如图所示是计算机程序计算,若开始输入-1,则最后输出的结果是 ;