题目内容
如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM的面积为1,则反比例函数的解析式为 ▲ 。
如果梯子的底端离建筑物5m,那么长为13m梯子可以达到该建筑物的高度是( )
A. 12m B. 14m C. 15m D. 13m
如图是用4个相同的小长方形与1个小正方形镶嵌而成的图案,已知该图案的面积为25,小正方形的面积为4,若用x,y表示小长方形的两邻边长(y<x),则下列关系中正确的是 ____________________ (填写序号)
①x+y=5 ②x-y=2 ③4xy+4=25 ④y2+x2=25
如图,已知反比例函数的图象与一次函数的图象交于点A(1,4)、点B(-4,n).
(1)求和的值;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量的取值范围.
如图,点P是正比例函数y=x与反比例函数y= 在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是________
正比例函数y=2x与反比例函数y=在同一坐标系的大致图象为( )
A.
B.
C.
D.
已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x-2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.
因式分解: = __________.
我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.